
Using delayed streams to discern changing conditions in
complex environments: Monitors in Apex 3.0

Will Fitzgerald
NASA Ames Research Center

william.a.fitzgerald@nasa.gov

Michael Freed
NASA Ames Research Center

michael.a.freed@nasa.gov

ABSTRACT
Apex is a NASA project that provides a number of components
for creating and modeling intelligent agents, used for applications
from human simulation to controlling an autonomous rotorcraft.
Much of the core technology is written in Common Lisp. The most
recent version of Apex, version 3.0, provides new capabilities for
monitoring changing conditions in complex environments. In this
paper, we describe these capabilities, focusing especially on the use
of delayed streams for efficient computation of conditions based on
state variable histories.

1. INTRODUCTION
The Apex System provides a range of components for modeling,
simulating, generating and analyzing intelligent behavior. Apex
is being used for a number of NASA projects, including the Au-
tonomous Rotorcraft Project, an Army/NASA collaborative effort
to produce an intelligent airborne observation platform and to de-
velop autonomous planning and control capabilities useful for mul-
tiple heterogeneous platforms; and Human-Computer Interaction
analyses, automating a complex but powerful and economically
valuable model for predicting human performance at human com-
puter interaction tasks.

Apex’s Action Selection Architecture (ASA) integrates AI tech-
niques such as hierarchical planning and online-scheduling useful
for creating agents with human-level ability. By building capabil-
ities into the architecture and providing a high-level language for
behavior representation, Apex has been a powerful tool both for
modeling human performance and for building soft real time exe-
cution systems.

Apex is written in Common Lisp. A high-level application develop-
ment and debugging tool, Sherpa, written in Java, provides a graph-
ical user interface. Application programming interfaces to other
languages and systems are available. The Apex team at NASA’s
Ames Research Center is readying the release of the 3.0 version of
the Apex System. Among the most important new features of the
3.0 release are new capabilities for monitoring for changing con-
ditions in complex environments. Developers and modelers now

have a much richer model of conditions to use for creating intelli-
gent, reactive applications, such as:

• Temporal relations on events. For example, a valve closure
command sent followed within 2 seconds by valve-closed
signal received, or new location commands sent by an op-
erator and not cancelled within 5 seconds.

• Temporal relations on intervals. For example, High turbu-
lence interval overlaps communication drop-off interval.

• Coordination between control and monitoring. For example,
the distance to car in front of me is less than a distance the
value of which depends on my desired speed.

• Time series data analysis. For example, the temperature of
instrument A has been monotonically increasing since the
heater was turned on.

• Unification of querying and monitoring. For example, the
temperature of instrument A has (at any point) fallen or falls
below some temperature T.

• Explicit constraints on data quality. For example, the tem-
perature of A has held steady with measurements arriving at
least 1/second.

• Uniform representation based on constraints, attributes, and
intervals. Apex 3.0 provides an ontology of condition types.
Conditions are based on explicit or inferred measurements
on state variables, or object attribute values that change over
time. Essentially, the Apex 3.0 monitoring system allows the
application developer to describe constraints on conditions,
which (if met) allow the system to react. The overall condi-
tion ontology in Apex 3.0 includes:

• Measurement constraints: constraints on the state variable it-
self, the value of the state variable, or the timing of the mea-
surement. For example, the altitude of the aircraft is greater
than 34,000 between now and 1 minute from now. This in-
cludes internal Apex measurements, such as the state of a
task being terminated.

• Estimation constraints: Inferred measurements based on data
regression or data persistence. For example, the color of
object-7 is red between now and 1 minute from now, assum-
ing that an objects color will persist for at least five minutes
or the altitude of the aircraft will be greater than 34,000 based
on a linear regression of data from the last 30 seconds.

• Simple episode constraints: Abstractions over the measure-
ment history of a state variable, including statistical, rate,
step, value, timing and quality constraints. For example, the
variance in the measured altitude of the aircraft exceeds some
value or the measured altitude of the aircraft is monotonically
increasing at some scale.

• Atomic episode constraints: External events that come into
the Apex system without specifics as to the underlying state
variable model. For example, a mouse click occurred.

• Complex episode constraints: Logical (and, or, and not) and
temporal relations (in order, before, after, etc.) over other
types of monitors, including other complex episodes. For
example, step two and step three of the current procedure
both must be in a terminated state and the measured state
of the landing gear must be down before the altitude of the
aircraft is below some level.

In this paper we will discuss some areas of interest to Common
Lisp programmers, especially with regard to creating larger, com-
plex applications in Lisp. In particular, we will focus on the use of
delayed streams, which have been crucial to the effective develop-
ment and use for monitors.

2. PDL AND MONITORS
Fig. 1 shows a typical procedure written in Apex’s Procedure De-
scription Language (PDL). It declares a procedure named(look
for object ?color) . It consists of three steps. It sends a
user notification when a color measurement for any object becomes
available, and then sends a notification when the location measure-
ment for the object seen becomes available. It then terminates (re-
turning the object location).

Thewaitfor clause in steps1 describes a simple monitor–it de-
scribes the enablement condition for starting the first notify task.
The condition is simply the sensing of a measurement of any ob-
ject’s color. Thewaitfor clause in steps2 is more complex–two
conditions have to be true: steps1 has to terminate and a loca-
tion measurement for the object bound in steps1 to have a lo-
cation measurement sensed. Finally, thewaitfor in steps3 is
monitoring for the termination of steps2 –note that?s2 alone in a
monitor clause is a syntactic shorthand for(task-state ?s2
= terminated) . Furthermore, the variables?s1 and?s2 are
bound to the instantiated tasks with the same name.

(procedure
(index (look for object ?color))
(step s1 (notify (i saw ?color ?object1))

(waitfor (color ?object1 = ?color)))
(step s2 (notify (i saw ?object1 at ?loc))

(waitfor
(:and (task-state ?s1 = terminated)

(location ?object1 = ?loc)))
(step s3 (terminate >> ?loc)

(waitfor ?s2))))

Figure 1: “Typical” PDL procedure

3. STATE VARIABLES

In the Apex system, astate variableis an attribute, of some object,
such as thealtitudeof a particular aircraft, sayaircraft-1, thetem-
peratureof anengine, thepositionof somebutton, etc. A particu-
larly important family of state variables is the state of the tasks be-
ing executed by the Apex system (as we saw by example in Fig 1);
for example, thestateof task-23might move frompendingto en-
gagedto terminated. Fig. 2 shows a state transition diagram for
task states.

Task State Transitions
In Apex

Pending

Enabled

Preconditions satisfied

Terminated

Terminate

Engaged

Resource available

Terminate

Resource available

Ongoing

Finish or TerminateSuspended

Interrupt

Reset

Resume

Terminate

Task refinement

Terminate

Figure 2: Task Transitions in Apex 3.0

The value of state variables can vary over time; the Apex system
allows for the recording of state variable measurements along with
their timestamps: for example, the altitude of an aircraft might be
10,000 at timet, 11,000 at timet+1, 12,000 at timet+2, etc. Apex
treats these measurements lightly, as it were; that is, very little is
assumed about the measurements except that they are temporally
ordered and are associated with a particular state variable.1 For-
mally, a measurement,m, is an unordered triple,[s, t, v], wheres,
t, andv are the state variable, timestamp, and value, respectively,
associated withm. Defines(m), t(m), v(m) as functions onm
giving a measurement’s state variable, timestamp, and value, re-
spectively.

The Apex system allows for the tracking ofstate variable histo-
ries, that is, the temporally ordered values of state variable mea-
surements. A state variable history,H, is a totally ordered set of
measurements such that ifmi, mj ∈ H andi < j, thent(mi) ≤
t(mj). We notate theith members ofH asHi, and the size ofH
as|H|. Let aninterval, i, be an ordered pair of timestamps,〈t1, t2〉
such thatt1 ≤ t2. We can define the interval of a non-empty state
variable history,interval(H), as〈t(H1), t(H|H|)〉. We can also
define (possibly empty) subsets of a state variable history on a given
interval. A state variable historyH ′ is such a subset given interval
〈i, j〉 if, if m ∈ H ′, thenm ∈ H andi ≤ t(m) ≤ j.

Monitoring in Apex is concerned with whether a condition occurs
within an interval. In the simplest case, this is whether a predicate

1In particular, it is not assumed that state variable measurements
necessarily persist (or not persist) over time. That is, for exam-
ple, knowing that the altitude of an aircraft is 10,000 at timet and
11,000 at timet + 10 does not allow one to assume what the value
is betweent = 0 andt = 10. Similarly, knowing that a button is in
thedownposition at timet does not allow one to assume what the
value is at timet+1. Apex does provide mechanisms, as mentioned
previously, to estimate such values.

is true of some state variable measurement within the interval–to
repeat an example from above, a measured temperature has fallen
below a setpoint value within the interval. Often, the interval is the
interval implied by being “in the future,”’ that is, from the point in
time monitoring begins until “the end of time.” The code snippet
in Fig. 3 shows a step,s1 which is initiated when a particular state
variable (the temperature of the room) falls below a setpoint.

(step s1
(put-on-coat)

(waitfor
(:measurement (temp room < 0))))

(step s2
(put-on-shoes)

(waitfor
(:measurement (temp room > 0)

:timestamp
(> (start-of +this-task+))))

Figure 3: Act when temperature change.

Although, in some sense, the normal case is to monitor for con-
ditions in the agent’s future, Apex is not limited to this–monitors
can check for past conditions as well, as in the monitor for steps2
in Fig. 32. Again, in the typical case, the first instance of a mea-
surement meeting the condition is the relevant measurement; but
there might be many values in an interval that meet the condition.
It would be good to use data structures and algorithms that opti-
mize for the normal, simple cases, but allow for complex checking
as well. The Apex system uses delayed streams extensively in the
monitoring subsystem.

4. DELAYED STREAMS
Delayed streams, sometimes calledpipes[4], generated lists[2],
lazy lists, or juststreams[1], are a special kind of sequence in
which all elements but the first element are calculated as needed.
Among other things, they allow the ability to represent countably
infinite lists (such as the integers). For our purposes however, de-
layed streams are just what we need: in the simple case, the first
value is what is required, and the remaining values are not. The
following is a quick overview of delayed streams; consult [1] or
[4]for more details.

The first requirement is to represent a delayed computation. A
delayed computation, called apromisein Scheme [3], is a func-
tion/value pair: when used, if the function is present, it should be
called to produce the value (and then the function is removed); if
no function is present, the value is used. Toforcethe promise is just
to use the promise. Fig 4 shows the simple code needed to create a
promise3.

Since delayed streams are sequences, we’ll use the delayed stream
equivalent ofcons , car and cdr to create and access delayed
streams. Note thatstream-cons must be a macro–it inserts a
promise where the tail is, delaying the computation of the tail until

2That enablement monitors are introduced with the clause
waitfor is thus a bit of a misnomer, but it does describe the usual
case.
3The code presented here is based on an almagram of the code in
[1] and [4].

(defstruct promise
(value nil) (function nil))

(defun force (promise)
(if (not (promise-p promise))

promise
(progn
;; calculate if needed
(when (promise-function promise)

(setf (promise-value promise)
(funcall (promise-function promise)))

(setf (promise-function promise) nil))
;; always return value
(promise-value promise))))

(defmacro promise (&body body)
‘(make-promise

:function (lambda () ,@body)))

Figure 4: Promise/force implementation. Quote inpromise is
a backquote.

it is forced. The functionstream-force forces the promises in
a delayed stream, perhaps up to a certain number. See Fig. 5.

Of course, one needs functions for mapping, filtering and append-
ing See Fig. 6.

Note that the functions in Fig. 6 all usestream-cons in non-
base cases. This ensures that further computation of streams is de-
layed. Theintegers function, defined in Fig 7, creates a delayed
stream of integers; evaluting(stream-filter (integers)
’oddp) results in the delayed stream(1 .#<promise>) .

5. USING DELAYED STREAMS IN APEX
MONITORS

In Apex, state variable histories themselves are represented as a
data structure with three components: a state variable (which is it-
self a data structure), and a resizable vector containing the the state
variable’s measurements. A vector, rather than, say, a treap or red-
black tree is used because it is almost always the case that new mea-
surements are added at the end of the history. Vectors also allow for
faster (binary) search of timepoints using intervals. The function
(first-index-within history interval) returns, us-
ing binary search, the lowest index of the measurements in a state
variable history within an interval (ornull if there are no mea-
surements within the interval). With this function in hand, it is easy
to write a function that returns a stream of values from a state vari-
able history within an interval. See Fig .8.

Again, the call tostream-cons means a delayed stream is cre-
ated. So, with a history,H, with values:

{〈s, 1, 1〉, 〈s, 2, 2〉, 〈s, 3, 3〉, ...〈s, 1000, 1000〉}

a call to (sv-history-stream H 〈2, 1000〉) yields the de-
layed stream(〈s, 2, 2〉 .#<promise>) .

The condition monitors described in Fig. 3 are thus implementable
as delayed stream filters, with(temp room > 0) , for example,

(defmacro stream-cons (head tail)
‘(cons ,head (promise ,tail)))

(defun stream-car (stream)
(car stream))

(defun stream-cdr (stream)
(when (promise-p (cdr stream))

(setf (cdr stream)
(force (cdr stream))))

(cdr stream))

(defun stream-force (stream &optional count)
(labels

((streamf (istream)
(if (null istream)

stream
(streamf (stream-cdr istream))))

(streamfc (istream cnt)
(if (or (null istream)

(<= cnt 0))
stream

(streamfc
(stream-cdr istream) (1- cnt)))))

(if (realp count)
(streamfc stream count)
(streamf stream))))

Figure 5: Stream accessor implementation. Quote in
stream-cons is a backquote.

being transformed into something like4:

(stream-filter
(lambda (m) (> (value m) 0))
(sv-history-stream h

(make-interval (now) (end-of-time))))

whereh is the state variable history associated with the state vari-
able(temp room) , (value m) returningv(m), andnow and
end-of-time returning timepoints referring to the current time
and the “end of time”5.

6. THE TRICKY CASE OF AND
In addition to the simple condition monitors we have been dis-
cussing, Apex also provides for monitoring for complex comdi-
tions; that is, various combinations of logical and temporal con-
ditions. As a simple example of a complex monitor, consider the
monitor in the code snippet of Fig 9, which enables signaling “May-
day” if both engines have failed6.

In this case, we have two state variable histories, call themE1 and
E2, on the status of engines one and two, respectively. IfI is the
default interval, this monitors for the conjunction of engines one
4When we use the expression “something like,” this indicates that
the code represented isn’t exactly the code found in the Apex code
base, but has been modified for our presentation in this paper.
5In Apex, this is defined asmost-positive-fixnum .
6Incidently, this code snippet also demonstrates that Apex’s state
variables can be discrete data as well as continuous data.

(defun stream-map* (fn streams)
(if (some ’null streams)

nil
(stream-cons

(apply fn
(mapcar ’stream-car streams))

(stream-map*
fn (mapcar ’stream-cdr streams)))))

(defun stream-map (fn &rest streams)
(stream-map* fn streams))

(defun stream-filter (predicate stream)
(if (null stream)

nil
(if (funcall predicate

(stream-car stream))
(stream-cons

(stream-car stream)
(stream-filter

predicate (stream-cdr stream)))
(stream-filter

predicate (stream-cdr stream)))))

(defun stream-append* (streams)
(if (null streams) nil

(let ((E1 (stream-car streams)))
(if (null E1)

(stream-append* (stream-cdr streams))
(stream-cons

(stream-car E1)
(stream-append*

(stream-cons (stream-cdr E1)
(stream-cdr streams))))))))

(defun stream-append (&rest streams)
(stream-append* streams))

(defun stream-mappend (fn stream)
(if (null stream) nil

(let ((x (funcall fn (stream-car stream))))
(stream-cons

(stream-car x)
(stream-append

(stream-cdr x)
(stream-mappend

fn (stream-cdr stream)))))))

Figure 6: Functions for mapping, filtering and appending of
delayed streams.

(defun stream-iota
(&optional (start 0) (step 1) end)
(if (or (null end)

(<= start end))
(stream-cons

start
(stream-iota (+ start step) step end))

’()))

(defun integers (&optional (start 0) end)
(stream-iota start 1 end))

Figure 7: Delayed streams of numbers.

(defun sv-history-stream (history interval)
(sv-history-stream-from

history
(first-index-within history interval)
(interval-end interval)))

(defun sv-history-stream-from (h index endpoint)
(if (or (null index)

(>= index (item-count history)))
nil
(if (> (timestamp-at h index) endpoint)

nil
(stream-cons

(value-at h index)
(sv-history-stream-from

(1+ index) endpoint)))))

Figure 8: State variable history streams.

(step (signal-mayday)
(waitfor

(and
(status engine1 = failed)
(status engine2 = failed))))

Figure 9: Signal “Mayday” if both engines fail.

and two failing withinI. As before, we can convert an individual
condition into a stream filter, for example:

(stream-filter
(lambda (m) (eql (value m) ’failed))
(sv-history-stream E1

(make-interval (now) (end-of-time))))

whereE1 is the Lisp variable representingE1; we can write a sim-
ilar stream filter forE2. What does it mean forboth streams to
return their values?

Previously, we defined a state variable histories (or subhistories)
as an ordered set of measurements. The natural meaning of two
state variable histories is the Cartesian cross-product of the two
state variable historiesE1 andE2’ i.e., the set of all pairs〈mimj〉
wheremi ∈ E1 andmj ∈ E2. The naive version of a Cartesian
cross-product for streams in in Fig 10.

(defun stream-xp-naive (E1 E2)
(stream-mappend

(lambda (i)
(stream-map

(lambda (j)
(list i j))

E2))
E1))

Figure 10: Naive Cartesian cross-product.

The problem with Fig 10’s algorithm is that it doesn’t work well
with infinite lists. Consider all pairs of integers:(naive-xp
(integers) (integers))) . This will return ((0 0) (0
1) (0 2) ...) ; in other words, it will never produce a pair(1
0) , because all the integers have to be consumed before starting
over. It must be said that the algorithm in Fig 10 is probably accept-
able for Apex monitors; streams used in monitoring are unlikely to
be infinite in length. However, by interleaving the steams, we can
produce an infinite stream of pairs of numbers that does, in fact,
reach(1 0) and other values by working diagonally though the
streams. [1] have a good discussion of this idea; the cross-product
function in Fig 11 is based on their ideas. An informal proof that
the algorithm of Fig 11 computes the Cartesian cross-product can
be found in the Appendix.

Whichever algorithm is used (I prefer the algorithm in Fig 11 just to
protect against failure using infinite lists), the functional equivalent
of Fig 9 is something like:

(stream-xp/2
(stream-filter

(lambda (m) (eql (value m) ’failed))
(sv-history-stream E1

(make-interval (now) (end-of-time))))
(stream-filter

(lambda (m) (eql (value m) ’failed))
(sv-history-stream E2

(make-interval (now) (end-of-time))))

The general Cartesian cross product function is easy enough to de-
fine; it can be found in Fig 12. The basic idea is that one stream

(defun stream-interleave (E1 E2)
(if (null E1)

E2
(stream-cons

(stream-car E1)
(stream-interleave

E2
(stream-cdr E1)))))

(defun stream-xp/2 (E1 E2)
(if (or (null E1) (null E2))

nil
(stream-cons

(list
(stream-car E1)
(stream-car E2))

(stream-interleave
(stream-interleave

(stream-map
(lambda (x)

(list(stream-car E1) x))
(stream-cdr E2))

(stream-map
(lambda (x)

(list x (stream-car E2)))
(stream-cdr E1)))

(stream-xp/2
(stream-cdr E1)
(stream-cdr E2))))))

Figure 11: Cartesian cross-product using interleaving.

produces a list of each element, two streams callstream-xp/2 ,
and three or more streams callstream-xp/2 on the first stream
combined with a recursive call to the rest of the streams. Because
stream-xp/2 always returns a list of pairs, we need to fix up the
recursive calls so that a flat list is returned.

Unfortunately, this is not quite what is needed for Apex. Apex mon-
itors allow pattern matching, and variable bindings can be passed
to the enclosing task. Consider the following monitor, which mon-
itors for engine temperatures. In this case, the value of the tem-
peratures are to be captured, and the value of the second engine’s
temperature has to be more than 10 degrees hotter than the value of
the first engine’s temperature. The(:measurement ...) form
allows an Apex programmer to define additional constraints on a
measurement monitor.

(step (warn engine2 hot)
(waitfor

(and (temp engine1 = ?x)
(:measurement

(temp engine2 = ?y)
:value (?y > (+ ?x 10)))))

Let us consider this in parts; first the simpler conjunct(temp
engine1 = ?x) . The stream that has to be returned is not, in
fact, a stream of measurements, but a stream of binding sets. A
binding set is just a set of variable/value pairs. Apex uses a sys-
tem based on the binding set code in [4], which provides func-
tions such asmake-binding-set , extend-bindings , and

(defun stream-xp* (stream-of-streams)
(cond

;; no sets? {}
((null stream-of-streams) nil)
;; one set? list of each element
((null (stream-cdr stream-of-streams))

(stream-map ’list
(stream-car stream-of-streams)))

;; two sets? call stream-xp/2
((null

(stream-cdr
(stream-cdr stream-of-streams)))

(stream-xp/2
(stream-car stream-of-streams)
(stream-car

(stream-cdr stream-of-streams))))
;; more than two? still call stream-xp/2
;; but fix up results that come back
(t

(stream-map
(lambda (pair)

(cons (car pair) (cadr pair)))
(stream-xp/2

(stream-car stream-of-streams)
(stream-xp*

(stream-cdr stream-of-streams)))))))

(defun stream-xp (&rest streams)
(stream-xp* streams))

Figure 12: Generalized Cartesian cross-product for streams.

substitute-bindings , as well as pattern matching code. Thus,
the form (temp engine1 = ?x) should turn into something
like Fig. 13.

(stream-map
(lambda (m)

(extend-bindings
’?x
(value m)
(make-binding-set)))

(sv-history-stream E1
(make-interval (now) (end-of-time))))

Figure 13: Mapping to bindings. E1 is the state variable history
associated with the state variable(temp engine1) .

The difficult thing is converting the second conjunct. We want to
provide something like the code in Fig. 13, but we must filter values
first based on the values of the variables?x –something like Fig. 14.

The question is how to provide a stream of binding sets to the filter
in Fig. 14, and how to do this in a general way. The solution is to
use the Cartesian product of Fig. 13 and the filtered stream Fig. 14,
which we show in Fig. 15.

The resultant binding stream of Fig. 15 will result in either an
empty or a non-empty stream. If the stream is empty, the monitor
fails (but may succeed as new measurements arrive). If it succeeds,
the usual case is that only the first binding set is used. Thus, even

(stream-map
(lambda (m)

(extend-bindings
’?y
(value m)
B))

(stream-filter
(lambda (m)

(> (value m)
(+ (substitute-bindings ’?x B))))

(sv-history-stream E2
(make-interval (now) (end-of-time))))

Figure 14: Mapping and filtering bindings. E2 is the state
variable history associated with the state variable(temp
engine2) , and B is a binding set returned in the stream from
Fig 13.

(stream-map
(lambda (m)

(extend-bindings
’?y
(value m)
B))

(stream-xp
(stream-map

(lambda (m)
(extend-bindings
’?x
(value m)
(make-binding-set)))

(sv-history-stream E1
(make-interval (now) (end-of-time))))

(stream-filter
(lambda (m)

(> (value m)
(+ (substitute-bindings ’?x B))))

(sv-history-stream E2
(make-interval (now) (end-of-time))))

Figure 15: Passing bindings from one stream to another.E1
and E2 are the state variable histories associated with the state
variables (temp engine1) and (temp engine2) , respec-
tively.

though we are taking the Cartesian product of two streams,E1 and
E2|, which has the obvious worst-case computational complexity
of |E1|×|E2|, we have a best case of (modulo the setup of creating
the streams) of looking at just one pair.

Of course, we don’t expect users writing applications using Apex
to write code like that of Fig. 15. Rather, we want to transform
the code from Apex’s Procedure Description Language, such as
that shown in the Apex code snippets shown above, into the kinds
of function calls shown above. We do this in the usual Lisp way,
by defining Lisp macros and writing code transformation rules. In
fact, the transformations are a bit more complicated than indicated
in this paper, in order to support the syntax we want for monitors
in PDL.

7. CONCLUSION
Our goals in creating the monitor subsystem for Apex 3.0 included
creating a flexible and intuitive language for describing conditions
in the world based especially on measured values. In creating this
flexibility, it is easy to lose the capacity to create efficient-enough
applications. Providing support for conjunctive condition monitor-
ing must, in the worst case, be computationally very expensive, as
we have hinted. With careful programming of the monitor sub-
system, we can ameliorate this expense, even if we cannot remove
it entirely. One strategy we have used is to use delayed streams to
represent the combinations of conditions that can occur. Because in
the normal case, only one condition result is used, delayed streams
allow us to avoid much of the computational overhead. Although
delayed streams are a standard enough feature in introductory func-
tional programming texts, we have elaborated on our use of them in
Apex as an example of a real application of them, and to encourage
others to consider adding delayed streams to their Lisp program-
ming toolbox.

Common Lisp code implementing the delayed streams system de-
scribed here is available on request to the first author.

Acknowledgments
We would like to thank Khalil Michael Dalal for helpful comments
on a previous draft.

8. REFERENCES
[1] A BELSON, H., AND SUSSMAN, G. J.Structure and

Interpretation of Computer Programs, 2nd edition. MIT Press,
1996.

[2] CHARNIAK , E., RIESBECK, C., MCDERMOTT, D., AND

MEEHAN, J.Artificial Intelligence Programming. Lawrence
Erlbaum Associates, 1987. second edition.

[3] K ELSEY, R., CLINGER, W., AND REES, J. Revised5 report
on the algorithmic language Scheme.ACM SIGPLAN Notices
33, 9 (Sept. 1998), 26–76.

[4] NORVIG, P.Paradigms of Artificial Intelligence
Programming:Case Studies in Lisp. Morgan Kaufmann, 1992.

APPENDIX
Cartesian Product Proof
Algorithm 1 is an implementation ofstream-xp/2 given in Fig. 11,
written in a general algorithmic style, and showing intermediate re-
sults.

Algorithm 1 sxp(S, T): function to return the Cartesian cross
product of s and t as a delayed stream. Scar, scdr,etc., are
stream-car , stream-cdr , etc..
Require: S andT are streams.
1: if Null?(S) ∨Null?(T) then
2: returnthe empty stream
3: else
4: a← list(scar(S), scar(T))
5: r ← smap(λx.list(scar(S), x), scdr(T))
6: c← smap(λx.list(x, scar(T)), scdr(T))
7: rc← sinterleave(r, c)
8: returnscons(a, sinterleave(rc, sxp(scdr(S), scdr(T)))
9: end if

We need to show two things. First, that Algorithm 1 computes the
Cartesian cross product of two delayed streams, and, second, that
it does so without infinite recursion.

To show that Algorithm 1 computes the Cartesian cross product
of two delayed streams, first, note that if eitherS or T are empty
streams, the Cartesian cross product is empty by definition. Lines 1
and 2 check this base case. In the non-base case, the Cartesian cross
product is computed in four parts, visually displayed in Table 1.
The first part is the upper left cell represented by the pairSi, Ti.
This is computed in line 4. The second is the stream of pairs from
Si+1, Ti to |S|, Ti–that is, the first row past the initial element. This
is calculated in line 5. The third is the stream of pairs fromSi, Ti+1

to Si, |T |–that is, the first column past the initial element. This is
calculated in line 6. Finally, the last part is the Cartesian cross
product of the substreams consisting ofSi+1 to S|S| andTi+1 to
T|T |. This is calculated in the recursive call to Algorithm 1 in line
8. The returned value from Algorithm 1 is thecons of the upper
left cell (i.e.,Si, Ti), plus the interleaving of the row and column,
interleaved with the recursive cross product. By inspection, this
is the cross product. Note that if there is either not an elementi
of eitherS or T , then at some substream ofS or T where one of
them “ran out” (i.e.,|S| or |T | was less thani), the recursive call
to Algorithm 1 would be called with a null stream, and the null
check of line 1 would obtain. By similar reasoning, if the length
of S is finite, then the cross product will have a finite number of
columns; if the length ofT is finite, the cross product will have a
finite number of rows. And, if both|S| and|T | are finite, the cross
product is finite, and the algorithm is guaranteed to terminate.

Table 1: Composition of Cartesian cross product
Si Si+1 Si+2 ... |S|

Ti Si, Ti Si+1, Ti Si+2, Ti ... |S|, Ti

Ti+1 Si, Ti+1 recur...
Ti+2 Si, Ti+2

... ...
|T | Si, |T |

To show that Algorithm 1 does not fall prey to the “infinite recur-
sion” problem described above–that is, on infinite streams, eventu-
ally for some finitei all pairs fromS1, T1 to Si, Ti will be gener-
ated in a finite number of steps, first note that the (possibly) infinite
streams generated in lines 5 and 6–that is, the ‘row’ and ‘column’
components–are interleaved in line 7. This prevents the “infinite
recursion” problem for the row and the column. Furthermore, in
line 8, this interleaved stream is interleaved with the (possibly in-

finite) recursive cross-product ofSi+1 to S|S| andTi+1 to T|T |.
The prevents the “infinite recursion” problem altogether, since the
resulting stream is made thecdr of the new stream headed by the
pair the pairSi, Ti.

