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Abstract

 

We need to build parsers that are robust in the face of
many types of parsing challenges, and evaluate them for
the accuracy and transparency of their results, and how
well the parser scales up to practically-sized problems.
We describe a number of ways to measure accuracy,
transparency and scale-up, in the context of evaluating
the parser in the Casper system, a tutorial for training
customer service representatives in complex problem
solving. 

 

Introduction

 

Natural language processing (NLP) began with the
building of software systems that could interpret human
language and turn it into something useful—for example,
the machine translation proposals of the 40’s and 50’s
(e.g., Weaver 1955) were put forth with the very practical
goal of building systems that could, for example,
translate Russian chemistry texts into English. As
research into NLP progressed, however, the difficulty of
doing NLP became very apparent, and, in many cases,
NLP research was abandoned.

However, it is still often the case that an effective
NLP system would be a very useful system to have, and
many approaches have been proposed to provide NLP,
especially in limited domains. In this paper, we discuss
evaluation metrics for parsers that have been created to
be built into, or 

 

embedded

 

 into application programs).
Specifically, we’ll look at parsers that were created for
the purpose of carrying on conversations with simulated
agents.

 

Communication with simulated agents

 

A common task for an embedded parser is to allow a user
of the application program to communicate with a
simulated agent. Consider the Casper system, for
example. Casper was built to train customer service
representatives of a British water utility, North West
Water, plc (Kass 1994). The major task of a customer
service representative is to converse with customers on
the telephone about customer inquiries and problems—

for example, problems with water quality. Casper is a
simulation program—novice customer service
representatives have the opportunity to talk to simulated
customers about problems the customers face. 

An important question is how the communication
between the student and the simulated customer will take
place. Figure 1 shows a spectrum of possibilities: from
pull-down menus to text parsers to speech perception.

 

Figure 1: The spectrum of interface possibilities.

 

An interface using speech perception would be very
difficult to build but add to the realism of a simulation;
communicating with pull-down menus may be easy to
build, but impinge on the naturalness of the simulation. A
possible compromise is to use a text parser: the user
types in what he or she wants to say, and embedded
parser determines what the student meant.

Text parsers, too, vary on a spectrum of possibilities,
based on the amount of knowledge or content which sup-
port them. Key word systems have little or no content
support them: statistical regularities are typically used for
parsing (Salton & McGill 1983). Full content systems,
such as Direct Memory Access Parsing (Martin 1989,
1990; Fitzgerald 1994a) require relatively complete rep-
resentations for parsing.

 

Figure 2: The spectrum of text parser possibilities.

 

For the Casper project, we elected to build a parser
based on indexed concepts (Fitzgerald 1994b). In a sys-
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tem using indexed concept parsing, each potential parse
is tagged with sets of index concepts. Index concepts can
be arranged in a taxonomic hierarchy; each index concept
is tagged with phrasal patterns. For example, the index
concept 

 

Water-Bits

 

 might be tagged with the phrasal
patterns “bits” or “particles.” Reading “bits” in the input
sentence “Can you describe what the bits look like?” will
activate the 

 

Water-Bits

 

 index concept. Activating an
index concept means that it will provide positive evi-
dence for each potential parse with which it has been
tagged, and negative evidence for each potential parse
with which it is not been tagged. Hierarchical relation-
ships between index concepts are honored, as well: If

 

Water-Bits

 

 are an instance of 

 

Water-Quality-
Problem

 

, then activating also 

 

Water-Bits

 

 activates

 

Water-Quality-Problem

 

.
The advantage of indexed concept parsing is that

going about the task of creating content to support an
embedded parser is simplified—the index concepts have
no structure (in the limit), nor do the phrasal patterns
associated with them (in the limit). 

In building a new technology, we want to answer the
question, Does the technology work? Does it do what it
was built to do? Before we can measure this, however,
we need to understand exactly what a parser is built to
do.

 

A model of embedded parsing

 

In Casper, a novice customer service representative will
communicate with simulated customers. As the student
communicates, a tutorial system intervenes. As with any
such program, the number of interventions is limited—
the tutor will be built to respond in certain situations, but
not in others. So, a key feature of such systems is that
there is a limited (even if large) number of responses the
system can process. In general, we can build a model of
an embedded parser (Figure 3 shows a diagram). 

 

Figure 3: Model of an embedded parser
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s. The system is built to turn that
text into a 

 

representation

 

 or set of representations that the
system can use to make the appropriate responses. 

In the case of the Casper tutor, a user might be in the
situation of troubleshooting a (simulated) customer’s
water quality problem, specifically (for example) trying
to determine exactly what the problem is that the cus-
tomer is experiencing. Among the tutor’s possible
responses is to intervene if the student is asking leading
questions (for example, “Do you have black bits in the
water?”) and tell the student to ask non-leading questions
(“Can you describe the water to me?”). Among the repre-
sentations that the parser might produce are the represen-
tations for the questions “Do you have black bits in the
water?” and “Can you describe the water to me?” 

So, given this model of embedded parsing, to evaluate
a parser embedded in an application program, we want to
ask:

• Does the parser produce the right representations?
That is, is the parser accurate?

• Does the parser promote the sense that a conversa-
tion is taking place? That is, is the parser transparent?

• Is the parser capable of adequately handling the vari-
eties of texts, users, situations and possible responses
it might meet? That is, is the parser scalable?

 

Measuring Accuracy

 

To measure the accuracy of a parser presumes we know
the answer to the question, what has the parser been built
for? For example, parsers built as general, off the shelf
tools such as the CLARE system (Alshawi et al 1992) or
the Alvey NL Tools (Briscoe, et al. 1987), might define
accuracy as coverage: that is, how much of naturally
occurring language the parser is likely to be able to
process. A typical statement of coverage, perhaps, comes
from a description of the natural language processing
system in the Cyc project: “The Syntax module can
properly handle about 75% of the sentences found in the
news stories of a typical issue of the newspaper 

 

USA
Today

 

 ... by ‘properly’ here we mean that the output is as
good as what our knowledge entered independently come
up with.” (Guha and Lenat 1994, p. 138), and from a
description of the Alvey NL Tools: its grammar is “in
principle able to analyse 96.8% of a corpus of 10,000
noun phrases taken from a variety of corpora (Carroll
1994, footnote 2).” Parsers might be built for more
immediate tasks, such as text categorization or
information extraction. For example, the Message
Understanding Conferences (MUC) bring together a
variety of research systems to compare their abilities to
read articles (for example, about terrorist episodes) and
fill in a template about the article, for example, who were



 

the victims, the perpretrators, etc. (Jacobs and Rau 1993;
Soderland and Lehnert 1994). 

But our task is not syntactic coverage, information
extraction or text categorization. Rather, we are describ-
ing parsers embedded into application programs. Fig. 1
describes a model of such a  parser. There are three inputs
to a parser: a text, a user and a situation. The output of the
parser should be a set of representations that accurately
model the intentions of the user in the situation, as
expressed by the text.

To measure the accuracy of a parser, we assume the
existence of an 

 

oracle 

 

that can return just those represen-
tations that do accurately model the intentions of the user
in a situation as expressed by the text—assuming the rep-
resentations exist that do so model the user’s intentions.
If we have such an oracle, we can compare the output of
the parser with the output of the oracle. We will call the
representations that an oracle would produce 

 

oracular
representations

 

, and the representations produced by the
parser, 

 

parsed-to representations

 

. Let us call a represen-
tation that is both a parsed-to representation and an orac-
ular representation a 

 

relevant representation

 

.

 

Recall and Precision

 

There are a variety of ways of comparing the output of
the oracle and the output of the parser. Two of the most
commonly used are 

 

recall

 

 and 

 

precision

 

 (Salton and
McGill 1983; Jacobs and Rau 1993; Soderland and
Lehnert 1994). Recall is the ratio of relevant
representations to oracular representations. We want
parsers that have high recall—this means that the parser
produces the representations that the idealized oracle
produces (although it may also produce other
representations that the oracle wouldn’t). In equation
form:

 

(EQ 1)

 

where 

 

P

 

 is the set of parsed-to representations and 

 

O

 

 is
the set of oracular representations. 

Ideally, we want the parser to produce just those rep-
resentations that the oracle would produce. Precision is a
measure of this: it is the ratio of relevant representations
to all of the representations produced by the parser. In
equation form:

 

(EQ 2)

 

again, where 

 

P

 

 is the set of parsed-to representations and

 

O

 

 is the set of oracular representations.

 

P O

 

∩

 

O

 

------------------

 

P O

 

∩

 

P

 

------------------

 

Where does the oracle come from?

 

An important question to ask is where the oracle comes
from. Because the oracle is an idealized construct, we can
only approximate one. One approach is to avoid
approximating the oracle altogether, and to use
information theoretic measures of the effect of different
information sources on the probability that a given
hypothesis, , is true (for example, Rosenfeld
1994). Another approach, exemplified by the MUC
evaluations, is to approximate the oracle by enumerating
the correct answers for a given sample of inputs, and
assume that these results project to the general population
of inputs (Jacobs and Rau 1993). This is the approach we
will take in this work. 

 

Perfect

 

 and 

 

acceptable

 

 recall

 

In the model of embedded parsing given above, the
output of the parser is a representation or set of
representations. It may be that, for the purposes of the
application program, it would be acceptable for an
oracular representation to appear within a set of
representations, of a certain size. For example, in the
Casper system, the student can pick from the top seven
best results of the parser. As long as the oracular
representation is within the top 

 

n

 

 results, we can call it a
relevant representation. Figure 4 shows the results from
the Casper parser from the text, “Describe the particles,
please.” The oracular match, “What kind of bits are in
you water?” is shown in bold face. Because this sentence
appears in the top 7 results, we call this an 

 

acceptable
match

 

; because it is also the best match returned by the
parser, we say it is a 

 

perfect match

 

.

 

Figure 4: Results from parsing “Describe the particles, please”

 

With these definitions in mind, we can also define perfect
recall and acceptable recall. Perfect recall is the recall
ratio when we describe a representation as relevant if it is
the best (or only) match produced by the parser.
Acceptable recall is the recall ratio when the

 

r O

 

∈

 

Describe the particles, please

 

Parse:

Results:

What kind of bits are in your water?

 

Can you describe the problem?
Can you draw some water and tell me how it smells?
Can you draw some water and tell me how it tastes?
Can you draw some water and tell me how it looks?
Can you run the water and tell me what you see?
Can you run the cold tap and tell me what you see?



 

representation is relevant as long as it appears in the top 

 

n

 

matches produced by the parser.

 

Measuring transparency

 

Recall and precision are measures of the accuracy of a
parser. We would also like to measure how 

 

transparent

 

 a
parser is. Following Heidegger, Winograd and Flores
(1987) discuss the 

 

readiness to hand 

 

of tools. A tool is
ready to hand if it becomes transparent in its use. That is,
we don’t notice a hammer when we’re pounding a nail
because we focus on the goal of getting the nail in the
wood. If the hammering fails, we might then examine the
hammer—perhaps the flat end has become worn, or there
is some other problem. The hammer becomes unready to
hand; while examining it, we cannot be pounding.
Similarly, a parser is ready to hand, or transparent, when
the user of the parser does not have to wonder about the
tool and its workings, but can concentrate on achieving
the communicate goals he or she has. Two characteristics
of a parser that will affect transparency are 

 

time to parse

 

and 

 

number of negotiations required

 

. These
characteristics are defined below. 

 

Measuring speed

 

Accuracy measurements affect transparency, but there
are many different reasons that a parser could become
non-transparent. A parser will tend to become less
transparent as the time it takes to return its results
increases. The amount of time it takes for a parser to
return its results for a specific interaction we will call the

 

time to parse

 

.
In the natural language parsing literature, time to parse
are typically measured in one of two ways. In the first
way, the algorithmic computational complexity of the
parsing algorithms used are examined. The advantage of
this approach is that a theoretical upper bound on the
parse time can be given. Unfortunately, most parsing
algorithms have upper bounds that are cubic to the length
of the input string (that is, an estimate of how long it will
take to parse a sentence of 

 

n

 

 words will be dominated by
some function of 

 

n

 

3

 

). Empirically, though, parsers tend to
do much better than this, and so even researchers who are
of a theoretical bent are proposing empirical testing of
different parsers (Slocum 1981, Carroll 1994). For
parsers in interactive programs, perhaps the best measure
of parse time is 

 

perceived average wall time

 

: that is,
asking the users of the system whether, on average, the
parser was fast enough in returning its results.

 

Measuring negotiation

 

It is often the case that an interactive program will allow
the user to commit to or to reject the results of a parse,
and, if the user rejects the parse, to try again to produce
an acceptable parse. This is analogous to a human
conversation, in which one person says something, call it
A, and the other person asks whether by A the first person
meant B (a paraphrase of A). The first person can agree,
or try again. We’ll assume that the fewer number of turns
the user needs to negotiate the meaning of the user’s
input, the more transparent the parser will be. Measuring
the how long it takes on average to come to an agreement
we’ll call 

 

negotiation length

 

.
We have developed two measurements of negotiation,

both of which make use of the student’s being able to
make multiple attempts before committing to a result.
One important fact is that a student must (unless he or
she gives up on the entire tutorial) commit to some result
at some time. The first measurement we call the 

 

first
strike percentage.

 

 This measures the percentage of times
the parser returns a result that is accepted by the user on
the first attempt. We can also measure how many
attempts it takes for a student to reach a result, and take
the average this over all the attempts. This we’ll call the

 

average path length

 

; the closer the average path length is
to 1.0, the more transparent it is (an interface with a first
strike rate of 100% would have an average path length of
1.0).    

 

Measuring scale-up

 

One of the most important questions to ask of any
parsing technology, especially ones built on concepts and
techniques in artificial intelligence, is whether it will
scale up to large problems (Schank 1991). Previously, we
described a spectrum of text parsers, from key word
parsers, to indexed concept parsers, to full content
parsers. Key word systems tend to fail as they are scaled
up to large problems because they rely on the statistical
correlation of text to underlying meaning. Factors such as
synonymy and ambiguity tend to lower the correlation.
Full content parsers, on the other hand, tend to fail as
they are scaled up because they are difficult to build; the
underlying conceptual representations required can be
arbitrarily hard.

Our hope, as we developed an indexed concept parser
for the Casper project, was that indexed concept parsing
would provide most of the advantages of both key word
systems and full content parsers, that is, by creating min-
imalist representations, we could solve (some of) the
problems key word systems have with synonymy and
ambiguity without having to create large numbers of



 

articulated representations required to do full content
parsing.

By creating an index concept parser, we wanted to
build a parser that would scale up. But the question
remains, how would we measure this? 

We have hinted that there are two concerns related to
scale up. One concern is with the development cost of
scaling up: is it possible to create the representations
need to support parsing? The other concern is with the
complexity of the representations of the application pro-
gram. Assuming that representations can be built for
parsing, how well will the parser behave (for example, on
recall measures) as the underlying complexity increases? 

Practically, though, we only need measure scale-up
for a particular implementation of a parser in an applica-
tion program. In this case, the complexity of the underly-
ing representations is known. In terms of the model of
embedded parsing given before, we know the range of
situations and responses which the parser will encounter
(although we probably do not know the range of texts
and users the parser will encounter).

Then, measuring scale-up becomes a qualitative
answer to the following questions:

• Is the cost of creating the parser acceptable?
• Is recall acceptable for the entire range of situations

and possible responses?
Our suspicions are that key word systems will have
acceptable development costs but low recall for medium
to large (open-ended) systems; that full content parsers
will have high development costs but low recall for small
to medium size systems, and impossibly high
development costs for large systems; and that indexed
concept parsing will have acceptable costs and recall
rates for small to medium systems, but unacceptable
recall rates for large systems.

 

Evaluation of the Casper parser

 

Having mentioned these measurements in the context of
Casper, we now describe the actual results of using some
of these measures on the use of the parser in Casper. The
following tables show the results of the beta testing of
Casper on 12 customer service representative trainees
who were engaged in up to six conversations with
simulated customers. 

Table 1 shows relevance measures. The percentage of
acceptable matches was 84.1% in the beta testing. We
hope to use the results of the beta testing to improve the
parser, particularly in adding synonyms for indexed con-

cepts, representations of different ways to achieve the
same communicate, goal and handling anaphora. 

Table 2 shows transparency measures. The first strike
rate for the parser, even in the strict version of this, was
higher than the menus, and the average path length was
longer—both giving evidence that the type-in box with
the parser is preferable to the hierarchical menus. 

Table 3 shows average path length measures. It is
interesting to compare the frequency with which the
parser and the hierarchical menus were used on the first
attempt: many more interactions were started with the
parser than the menus (391 and 260, respectively); this
concurs with user reports that they preferred to use the
parser. The average path length for the parser is less than
the average path length of the hierarchical menus. This
indicates that the students were able to say what they
wanted to say in fewer tries using the parser.  

 

Conclusions

 

Historically, parsers have been created to prove some
theoretical point. But building parsers for practical
applications will affect how we evaluate them. We need
to build parsers that are robust in the face of many types
of parsing challenges, and evaluate them for their
accuracy and transparency, and how well they scale up
for practical systems. 

 

TABLE 1. Accuracy measures in Casper (recall)

Accuracy measures (N=391) i %

 

Percentage of acceptable matches 
(set size = 7; best=100%)

329 84.1%

Percentage of perfect matches 273 69.8%

 

TABLE 2. Transparency measures in Casper (strike 
rate)

Strike rate n i %

 

First strike rate, hierarchical 
menus (best=100%)

260 179 68.8%

Loose first strike rate, parser 391 322 82.4%

Strict first strike rate, parser 391 270 69.1%

 

TABLE 3. Path length measures in Casper (path length)

Average path length n length

 

Average path length, hierarchical menus 
(best=1.00)

260 1.75

Average path length, parser 391 1.28



 

Acknowledgments

 

This work was supported in part by the Defense
Advanced Research Projects Agency, monitored by the
Office of Naval Research under contracts N00014-91-J-
4092 and N00014-90-J-4117. The Institute for the
Learning Sciences was established in 1989 with the
support of Andersen Consulting, part of The Arthur
Andersen Worldwide Organization. The Institute receives
additional support from Ameritech and North West Water
Group plc, Institute Partners, and from IBM.

 

References

 

Alshawi, H., Carter, D., Crouch, R., Pulman, S., Rayner,
M. & Smith, A. (1992). CLARE: A Contextual Rea-
soning and Cooperative Response Framework for the
Core Language Engine. Cambridge, UK: SRI Interna-
tional. 

Briscoe, E., Grover, C., Boguraev, B. & Carroll, J.
(1987). A formalism and environment for the devel-
opment of a large grammar of English. In Proceedings
of 10th International Joint Conference on Artifi cial
Intelligence, (pp. 703-708). 

Carroll, J. (1994). Relating complexity to practical per-
formance in parsing with wide-coverage unification
grammars. In the Proceedings of the Association for
Computational Linguistics, (to appear). 

Fitzgerald, W. (1994a). Direct memory access parsing in
the Creanimate biology tutor. In 

 

Proceedings of the
Tenth Conference on Artificial Intelligence for Appli-
cations

 

, (pp. 467-468). Los Alamitos, CA: IEEE
Computer Society Press.

Fitzgerald, W. (1994b). Indexed concept parsing for
interactive tutors. 

 

Proceedings of the Active Natural
Language Workshop of the AAAI Spring Symposium

 

1994. 
Guha, R. V. & Lenat, D. B. (1994). Enabling agents to

work together. Communications of the ACM, 37(7),
127-142.

Jacobs, P. S. & Rau, L. F. (1993). Innovations in text
interpretation. Artifi cial Intelligence, 63(1), 143-191.

Kass, A, (1994). The Casper Project: Integrating simula-
tion, case presentation, and Socratic tutoring to teach
diagnostic problem solving in complex domains.
Technical Report 51. The Institute for the Learning
Sciences, Northwestern University, Evanston, IL.

Martin, C. E. (1989). Case-based parsing and Micro-
DMAP. In Inside Case-based Reasoning, C.K. Ries-
beck and R. C. Schank, eds. (pp. 319–392). Lawrence
Erlbaum Associates, Hillsdale, N.J.

Martin, C. E. (1990).

 

 Direct Memory Access Parsing

 

.
Ph.D. dissertation, Yale University, New Haven, CT.

Rosenfeld, R. Adaptive Statistical Language Modeling: A
Maximum Entropy Approach. Technical Report
CMU-CS-94-138, Carnegie Mellon University, Pitts-
burgh, PA.

Salton, G. & McGill, M. J. (1983).

 

 Introduction to Mod-
ern Information Retrieval

 

. McGraw-Hill. 
Schank, R. (1991). Where’s the AI? AI Magazine, 12:4,

pp. 38–49.
Slocum, J. (1982). A practical comparison of parsing

strategies. In Proceedings of Proceedings of the 19th
Annual Meeting of the Association for Computational
Linguistics, (pp. 1-6). 

Soderland, S. & Lehnert, W. (1994). Corpus-driven
knowledge acquisition for discourse analysis. In the
Proceedings of the Twelfth National Conference on
Artifi cial Intelligence, (to appear). 

Weaver, W. (1955). Translation. In W. N. Locke & A. D.
Booth (Eds.), 

 

Machine Translation of Languages

 

 (pp.
15-23). London: John Wiley and Sons.

Winograd, T., & Flores, F. (1987). 

 

Understanding Com-
puters and Cognition: A New Foundation for Design

 

.
Reading, MA: Addison-Wesley. 


