
Multimodal Event Parsing for Intelligent User Interfaces

Will Fitzgerald
Kalamazoo College
Kalamazoo, MI USA

+1 269 337 5721
wfitzg@kzoo.edu

R. James Firby
Michael Hannemann

I/NET, Inc.
Chicago, IL USA
+1 773 255 4702

firby,hannemann@inetmi.com

ABSTRACT
Many intelligent interfaces must recognize patterns of user
activity that cross a variety of different input channels. These
multimodal interfaces offer significant challenges to both the
designer and the software engineer. The designer needs a
method of expressing interaction patterns that has the power
to capture real use cases and a clear semantics. The software
engineer needs a processing model that can identify the de-
scribed interaction patterns efficiently while maintaining
meaningful intermediate state to aid in debugging and sys-
tem maintenance.

In this paper, we describe an input model, a general recogni-
tion model, and a series of important classes of recognition
parsers with useful computational characteristics; that is, we
can say with some certainty how efficient the recognizers
will be, and the kind of patterns the recognizers will accept.
Examples illustrate the ability of these recognizers to inte-
grate information from multiple channels across varying time
intervals.

Categories & Subject Descriptors: I.5.5 [Pattern Rec-
ognition]: Implementation – special architecture

General Terms: Human Factors

Keywords: Multi-modal parsing, event recognition, CERA

I NTRODUCTI ON
Many intelligent user interfaces need to be multimodal, that
is, allow the user of the interface to interact with a system
using multiple channels. For example, an effective in-car
navigation device may allow the driver to click on an on-
board map display and say “take me here;” the navigation
system may use event data from the internal car networks
and an onboard global position system to determine car loca-
tion and path planning, and then to provide appropriate
(audio and visual) driving directions.

System designers and implementers often find it useful to
model interfaces in terms of user events that trigger system
actions. As systems become more complex, it is often pat-
terns of user activity that dictate which actions should be

performed, rather than single events. The ability to represent
and identify complex user input patterns is key to the design
of interfaces to such systems.

In addition to modeling user input, system designers must
also monitor system changes and present useful information
back to the user. Often this requires filtering or distilling
system state information into notifications with a more ab-
stract meaning. Again, as systems become more complex,
detecting and classifying state changes often involves moni-
toring multiple data streams for semantically meaningful,
multimodal patterns.

For example, consider a human/computer interface built for
the control and monitoring of an integrated Waste Recovery
System (which recycles urine and waste water into water us-
able for drinking and other functions) at NASA’s Johnson
Space Center [14]. The system in question has several large
subcomponents, including a biological water processor (see
Figure 1), a reverse osmosis system, an air evaporation sys-

Figure 1: Biological Water Processor Component of
Water Recovery System (NASA Photo)

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first
page. To copy otherwise, or republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.
IUI’03, January 12–15, 2003, Miami, Florida, USA.
Copyright 2003 ACM 1-58113-586-6/03/0001…$5.00.

tem for brine recovery, and a post-processing system. All in
all, nearly 200 different data streams are available.1

Detecting interesting patterns is complicated because there
are so many data streams, and each subcomponent’s data are
logged asynchronously. For example, in case of a loss of
communication from the control system, the entire waste
recovery system must begin procedures to ensure that it is in
a safe state. Each subsystem has its own safing procedures.
Detecting that safing is complete varies among the subsys-
tems. Each subsystem has its own measurement or combina-
tion of measurements which indicate it has gone into safe
mode. Further, each subsystem arrives at a safe condition
independently from the others. For example, the reverse os-
mosis system is in a safe mode if its effluent flow meter is
below a certain threshold value; the post-process system is in
a safe mode if flow pressure is below a certain value, the O2

concentrator is off and O2 flow drops below a threshold.
As Oviatt states [13], it is a myth that “multimodal” primar-
ily means speech plus pointing. Even direct user input can
take many forms: other body gestures, drawings, and ortho-
graphic symbols are common human-to-human interactions
in addition to speech and pointing. Input that comes from
sources other than the user can vary practically without limit.
Recognizing patterns in data from multiple channels is made
more difficult by this wide variety of potential input types.
Further, the temporal relationships among data are not sim-
ple. For example, Oviatt cites another myth: that a deictic
gesture always occurs simultaneously with a deictic utter-
ance. Rather, the gesture often comes before or after the ut-
terance: “synchrony does not imply simultaneity.”

By making certain simplifying assumptions about the form
input data will take, we can describe classes of recognition
parsers that are useful for finding patterns in both user input
and system output. These parsers have well defined compu-
tational characteristics; that is, we can say with some cer-
tainty how efficient the recognizers will be, and what kind of
patterns the recognizers will accept. We turn to describing an
input model, a general recognition model, and a series of
important recognizer classes.

EVENT RECOGNI TI ON
Our model for understanding multimodal input is to recog-
nize interaction patterns both within and across input modes.
The model draws on a tradition of “understanding as recogni-
tion” that has been used extensively for natural language
processing [4, 10]. The key to this approach is to look for
hierarchical patterns associated with conceptual representa-
tions in an input stream of individual words, much like chart
parsing. We extend this approach to include patterns that
combine “events” from multiple input modes using a variety
of temporal relationships beyond the simple total order of
words in natural language. When a pattern is recognized it
may generate additional events to be recognized by other
patterns, allowing a rich mixture of hierarchical, recursive
recognition.

1 From the biological water processor, 76 data values; from the reverse

osmosis system, 42 data values; from the air evaporation system, 51
data values; from the post-processing system, 30 data values.

Typical multimodal user interfaces process each mode of
interaction as a separate input stream and attempt to build
structured representations of the meaning of each stream
separately. These representations are then combined by some
sort of integration module. Our approach allows individual
recognizers to process input from any combination of mo-
dalities. System processing can use separate patterns within
each mode when that makes sense, or patterns can combine
events from different modes right from the beginning. In
either case, the meaning of various user interactions is con-
structed by pattern recognition alone, with no post-
recognition integration module.
We have chosen to define pattern recognizers as separate
computational units, rather than as input to a multi-
dimensional chart parser, to simplify the characterization of
the computational properties of each type of recognizer (or
pattern) and to simplify system development by allowing
custom event matching algorithms within individual recog-
nizers when necessary.

Example
Consider the standard example: speaking “Go here” while
synchronously tapping on a map display. A speech recogni-
tion system produces the stream of temporally ordered word
events “go” and “here.” The tapping produces a tapping event
containing the x, y coordinates of the tap. A typical event
stream, with each event’s duration identified by a start and
finish time, might look those in Table 1:

Start Finish Event
100 100 (word “go”)
105 105 (tap 22 87)
112 112 (word “here”)

Table 1: Example multimodal event stream with start
and finish times in milliseconds.

Here, the tapping is recorded as being simultaneous with the
first word recognition, but it could also precede or follow or
be simultaneous with either word event; to be meaningful, it
only has to be synchronous with the word events; i.e., occur
within some time window.

In the system we have built, we could recognize this syn-
chrony with the pattern2 in Figure 2.

(within (all (tap ?x ?y)
 (in-order (word “go”)
 (word “here”)))
 P0.250S)
Figure 2: Example multimodal event recognition pattern

This pattern is written to predict that, within a duration3 of
250 ms., both a tap event and the recognition of the sub-
pattern of the words “go” “here” in order, will occur; with

2 For illustration, we insert the words in the patterns directly in this ex-

ample. It is likely that we would define a patterns which represented
the semantic content of “go here” would be more useful.

3 PyYmMwWdDThHmMnS is the ISO-8601 standard for representing a
duration.

the x, y coordinates bound to the variables ?x and ?y respec-
tively.

GENERAL EVENT MODEL
We begin by assuming that all input to a recognizer (user or
otherwise) takes the form of discrete, time stamped, typed
events. By discrete we simply mean that incoming events
are individually distinct, non-continuous data. Of course,
continuous data can be transformed into discrete data in vari-
ous ways; for example, a speech stream can be converted into
a sequence of discrete words using speech recognition tech-
niques; other continuous waveforms can be effectively con-
verted to discrete data via the Fourier transform, etc.

By time stamped, we mean that each input event has associ-
ated with it a start time and a finish time, such that the start
time is ≤ the finish time. Given time stamps, events can be
put in a total order with respect to the intervals the time
stamps define [1]. We further assume that, in general, events
are signaled in monotonically non-decreasing order of their
finish times. For example, the three words in the sentence
“take me here” are signaled in temporal order. This assump-
tion is not a very strong one; the greatest practical difficulty
is ensuring that event signals do, in fact, arrive in proper
order and that the various input channels have the same
clock.

By typed, we mean that events can be placed into distinct
classes, and that each class defines an equality predicate, =,
such that if a,b are events of the same class, and a=b, then a
and b are the same, otherwise they are not the same4. Again,
this assumption is not very strong; it merely forces the rec-
ognition system to distinguish among different kinds of
events (for example, words vs. mouse clicks) and distinguish
when a looked-for event has been seen. For example, if a
recognizer predicts that the word “here” will occur next, it
can recognize “here” when it arrives, or distinguish it from
another word5.

GENERAL RECOGNI ZER MODEL
We model a parser, or (more generally) an event pattern rec-
ognizer, as a function mapping events to {ignore, active,
futile, complete}¥ {[start, finish]}, where start and finish
are times. In other words, the function maps an event to a
completion state plus a start time and a finish time. The se-
mantics of this function depend on the value of the comple-
tion state. If the value is ignore, the event is irrelevant to the
recognizer. If the value is active, the event is relevant to the
recognizer, but the recognizer (perhaps after changing some
internal state) still requires additional events before recogniz-
ing the pattern. If the value is futile, the presence of this
event indicates that this recognizer is not able to recognize
the pattern. If the value is complete, the pattern has been
recognized.

Practically, recognizers will usually maintain some kind of
internal state. For example, a recognizer for the pattern a, b,
c in order will need to maintain (at a minimum) how much

4 This is without regard to the start and finish times of the event.
5 In fact, the recognizer might only make this distinction probabilistically,

using standard statistical techniques.

of the pattern has already been recognized so it can determine
when it is complete and when it is still active. From a soft-
ware engineering point of view, the ability to inspect this
state is a crucial element in monitoring and debugging rec-
ognizer-based interfaces.

The start and finish times define the interval over which the
recognizer completely recognized the pattern, or the interval
over which it remained active or became futile.

TYPES OF RECOGNI ZERS
The general recognizer model presented is an abstract one, to
be sure. However, specific classes of recognizers can be iden-
tified that are of more concrete use. Several useful recognizer
classes are one recognizers, binding recognizers, in-order
recognizers, one-of recognizers, all recognizers, Allen recog-
nizers, within recognizers, and without recognizers.

In general, we use [type element1 element2 … elementn] to
define a recognizer, where type is the type of recognizer (one,
binding, etc.) and the elementn are the elements of the pattern
to be recognized. For all of the recognizer types we will
define, an element of a pattern can either be an event form
(i.e., an appropriate parameter to an event equality predicate)
or another recognizer. This will allow us to compose recog-
nizers and recognize complex patterns of events.

One Recogniz ers
One recognizers look for exactly one event (or sub-
recognizer). They typically form the basis of event transduc-
ers that convert events from one type to another or simple
event handlers, that take action when an event is seen. Given
the recognizer [one i] where i is an event form, and a probe
event p, the recognition function is complete if i=p, and
ignore otherwise, with the start and finish times taken from
p. Given the recognizer [one r], where r is a recognizer, the
recognition function has the same value as r.

For a given probe event, the computational complexity of a
one recognizer is clearly the same as the complexity of the
event equality predicate if the target is an event form, or, if
the recognizer is for a sub-recognizer, the same as the com-
plexity of the sub-recognizer. In general, the computational
complexity of an event recognizer depends on either the
complexity, e, of the equality predicate or the complexity of
the constituent sub-recognizers. To simplify the discussion,
we give complexity in terms of e.

Binding Recogniz ers
Binding recognizers are similar to one recognizers, but they
return state in addition to recognizing an item. In essence,
they bind the value of the recognized item to an attribute.
These can be represented as [binding attribute constraint],
where attribute is the name of an attribute, and constraint is
a function which maps from events to the Boolean set {true,
false}. Given a recognizer of this form, and a probe event p,
the recognition function is complete if constraint(p) is true,
and ignore if constraint(p) is false. Further, if the recogni-
tion function is complete, then the attribute is bound to p.

Binding recognizers are especially useful for recognizing
hierarchical events, such as natural language syntax and se-
mantics, especially in conjunction with the multiple-item
recognizers that follow. Indeed, if the constraint is a stan-

dard unification algorithm, binding recognizers are essen-
tially unification parsers. An example is given below for in-
order recognizers.

For a given probe event, the computational complexity of a
binding recognizer is the same as the complexity of the con-
straint predicate, assuming that creating a binding between
an attribute and a value can be done in constant time.

I n-order Recogniz ers
In-order recognizers recognize patterns of events (and sub-
recognizers) that occur in temporal order. Here, we introduce
the idea of event contradiction. The basic idea is this: in a
complex, multimodal input environment, many events will
occur that are not relevant to the completion or futility of an
in-order recognizer. For example, if the recognition pattern
is [in-order “take” “me” “here”], an event coming from a dis-
play click is not relevant to this particular pattern.6 If, how-
ever, the recognizer has seen “take” and “me,” and then sees,
for example, “dog,” the recognizer should fail. In other
words, the event equality predicate is not sufficient; we need
another predicate function which maps from events ¥ events
to the Boolean set {true, false}. This predicate can be as
simple or as complex as necessary for a given application.

In-order recognizers need to maintain state about elements
that remain to be seen, and elements that have been seen.
We’ll call the former the remainder list (rem) and the latter
the seen set (seen). The semantics of the recognizer, for a
probe event p, are:

Return complete if:

|rem|=1 and p= first(rem), or

|rem|=1 and first(rem) is a recognizer and p completes
first(rem);

Otherwise, return active if:

|rem|>1 and p=first(rem), (adding p to seen, and set-
ting rem to rest(rem)) or

|rem|>1 and first(rem) is a recognizer and p completes
first(rem) (setting rem to rest(rem)) or

first(rem) is a recognizer and p makes first(rem) active

Otherwise, return ignore if:

|rem|>1 and first(rem) is an event and p≠first(rem) and
p contradicts no member of seen,

first(rem) is a recognizer and p is ignored by first(rem)
and p contradicts no member of seen;

Otherwise, return futile.

These conditions are somewhat complicated, but the general
idea is to recognize the sub-elements in order, and fail if
there is a contradiction to what has already been seen, unless,
of course, what is being looked for is just that item at that
point. The start and finish time of the recognizer is the start
time of the first event placed into the seen set, and the finish
time of the last event seen before the recognizer completes.

6 It is likely to be relevant to a larger pattern, but not the linguistic pat-

tern.

For a given probe event, the computational complexity of an
in-order recognizer has a number of components. First is the
complexity e of the equality predicate. Second, is the amor-
tized cost of checking for a contradiction. In other words, if a
recognizer has, on average, m events in the seen set, and the
cost of checking that two events contradict is c, then this
cost component is m times c. Thus the cost of a probe is
e+mc, where e is the cost of the equality predicate, and c is
the cost of the contradiction predicate.

In special cases, versions of in-order recognizers can be de-
fined in which “contradiction” is defined in less general
terms (as for example, in classic string-matching algo-
rithms). These recognizers will be more efficient.

As an example, consider the event pattern [in-order a b c d
e], where a, b, … e are event forms and -a, -b,…, -e indicate
event contradiction. Table 2 shows three example streams of
events, and the results after each event signal.

a b c d e …

ACT ACT ACT ACT COM

a b c c d d e

ACT ACT ACT IGR ACT IGR COM

a b c c -b …

ACT ACT ACT IGR FUT

Table 2: [in-order a b c d e] with three different event
streams and recognizer results. ACT is active, COM is

complete, FUT is futile and IGR is ignore.

All Recogniz ers
All recognizers are similar to in-order recognizers. The basic
semantics are that all of the items must be seen for the rec-
ognizer to complete, but the order in which they happen is
not important. The issue of event contradiction remains sig-
nificant. Event contradiction causes an event that has been
seen to be put back into the set of items remaining to be
seen. This ensures that an all recognizer completes only
when all of its constituent event forms have been seen to-
gether.

Here, rem is the remainder set, the remaining items to be
recognized; seen is the seen set, the items which have been
seen. The recognition semantics, for a probe event p, are:

Return complete if:

|rem|=1 and p=i, an event form which is the only
element of rem, or

|rem|=1 and p completes i, a recognizer which is the
only element of rem;

Otherwise, return active if:

|rem|>1 and $i such that i is an event form and i=p,
(adding p to seen, and setting rem to rem-{i}) or

(algorithm continued)

|rem|>1 and $s such that s is an event form in seen
and s contradicts p, (setting seen to seen-{s}) or

|rem|>1 and $i such that i is a recognizer and p com-
pletes i (setting rem to rem-{i}) or

Otherwise, return ignore.

As for in-order recognizers, the start and finish time of the
recognizer is the start time of the first event placed into the
seen set, and the finish time of the last event seen before the
recognizer completes.

a b c d …

ACT ACT ACT COM

d a c b …

ACT ACT ACT COM

a b c b -c d c

ACT ACT ACT IGR ACT ACT COM

Table 3: [all a b c d] with three different event streams
and recognizer results.

The computational complexity of all recognizers is similar
to in-order recognizers. The cost of the equality predicate
must be amortized over the average number of items in the
remainder, and the cost of the contradiction must be amor-
tized over the average number of items in the seen set. Thus,
the cost of a single probe is ne+mc, where n is the average
number of items in the remainder, e is the cost of the equal-
ity predicate, m is the average number of items in the seen
set, and c is the cost of the contradiction predicate.

As an example, consider the event pattern [all a b c d e],
where a, b, … e are event forms and -a, -b,…, -e indicate
event contradiction. Table 3 shows three example streams of
events, and the results after each event signal.

One-of Recogniz ers
One-of recognizers complete as soon as one of their pattern
items completes. No state needs to be maintained, and con-
tradiction does not obtain. The recognition semantics, for a
probe event p, are:

Return complete if:

There is some event form i such that p=i, or

There is some recognizer and it returns complete on p;

Otherwise, return futile if:

All pattern items are recognizers that have become fu-
tile, or

Otherwise, return active.

The start and finish times are the start and finish time of the
event or recognizer that completed.

The computational complexity of a one-of recognizer with n
elements is ne, where e is the cost of the equality predicate.

Allen Recogniz ers
James Allen described the relationships between temporal
intervals in [1]; a list of these is given in the appendix.
These form a super-class of recognizers of one of these
forms:

[relation element1 element2] or

[relation element1 start finish]

where relation is one of the Allen temporal relationships,
elementn is an event form or recognizer, and start and finish
describe a temporal interval (a start time and a finish time).

The semantics of the Allen recognizers are complete if the
relation holds between the elements or between the element
and the specified interval; futile if an element is futile; ig-
nore if all elements ignore an event, or active, otherwise.
The start and finish times depend on the individual relation-
ship involved. The computational complexity for an event
probe p is 2e+d, where e is the cost of the event equality
predicate (for event forms) or for recognizers, the cost of the
recognizer; and d is the cost of comparing intervals.

Within Recogniz ers
A within recognizer succeeds if an element occurs whose
duration (finish time less start time) is no longer than a
specified amount of time. Specifically, given [within element
duration], the semantics for a probe event p with start time s
and finish time f:

If element is an event form, then

Return complete if:

p=element and (f-s)≤duration,

Return futile if:

p=element and (f-s)>duration,

Otherwise, return ignore.

If element is a recognizer, then

Return complete if:

p makes element complete and the start time-finish time
of the element is ≤ duration,

Otherwise, return futile if:

p makes element futile, or element returns complete and
the start time-finish time of the element is > duration

Otherwise, return ignore if:

p is ignored by element

Otherwise, return active.

The computational cost of a within recognizer e+d; that is,
the cost of matching the element plus the cost of the interval
comparison.

Without Recogniz ers
The basic idea of a without recognizer is that the recognizer
will succeed if an interval passes without an event element
succeeding, and it will fail otherwise. Specifically, given
[without element begin finish], the semantics for a probe
event p with start time s and finish time f:
If element is an event form, then
Return complete if:

p=element and s>finish, or
Otherwise, return futile if:

p=element, or
Otherwise, return ignore.
If element is a recognizer, then

Return complete if:
p makes element return futile,

Otherwise, return futile if:
p makes element return complete and s≤finish;

Otherwise, return ignore if:
p is ignored by element

Otherwise, return active.
On complete, the start time of the recognizer is begin and the
finish time is finish.
The computational complexity for an event probe p is e+d,
that is, the cost of matching the element plus the cost of the
interval comparison.

SI GNALI NG ALGORI THM
Given a recognizer, it is useful to consider associating with
it a callback procedure; that is, a procedure that is called
when the recognizer completes. The parameters for this pro-
cedure are the start and finish times of the recognizer at com-
pletion as well as any state the recognizer might have built
(through binding recognizers).

S ¨ {}; // states for recognizer callbacks
F ¨ {}; // the recognizers which have completed
For each r in R do:

result, start, finish, state ¨ r(event);
case result:

futile: F ¨ F »{r};
complete:

F ¨ F » {r};
S ¨ S »{[r, start, finish, state]};

end case;
end for;
R ¨ R – F;
for-each(l(s)(apply first(s).callback,rest(s)),S);

Figure 2: Signaling Algorithm

A recognizer function is active if it is registered to receive
event signals. Call the set of active recognizers R.

Signaling an event (with associated start and finish times) is
done with the algorithm in Figure 2.

Essentially, the algorithm sends an event to all the registered
recognizers. If a recognizer returns futile, it is marked for
removal. If a recognizer completes, it is also marked from
removal, but it and its data are stored so that its callbacks
can be run. After all of the registered recognizers receive an
event and return a result, the recognizers marked for removal
are removed, and all of the successful callbacks are run.
Thus, the computational complexity of signaling an event is
the sum of the computational complexity of the active rec-
ognizers.

Note that one of the possible things to do in a callback is to
signal another event; in this way, recognizers can affect one
another and hierarchical, complex events can be recognized.

CURRENT I MPLEMENTATI ON
This model for event pattern recognition described has been
implemented as CERA, the Complex Event Recognition

Architecture. CERA is written in Common Lisp. In addition
to recognizer definition and execution, CERA also provides
an event visualization tool and an Integrated Development
Environment based on the Eclipse extensible IDE [2].

Another example
CERA is being developed as a general event recognition
tool. As mentioned above, it is currently being used in a
demonstration project at NASA’s Johnson Space Center in
the context of a large, multi-station, multi-channel monitor-
ing project for water recovery [14].

As an example of a event pattern recognizer definition in
CERA, we consider what it means to recognize that the wa-
ter recovery system has gone into safe mode. The waste re-
covery system is in safe mode when each of its four subsys-
tems go into safe mode. Because the subsystems go into
safe mode asynchronously from each other, determining that
all of the subsystems have entered into safe mode is a good
example of an all recognizer. The form used to recognize this
is7:
(define-recognizer (safing-complete)
 (pattern
 ‘(all
 (safing (system pbbwp) (status on))
 (safing (system ro) (status on))
 (safing (system aes) (status on))
 (safing (system pps) (status on))))
 (on-complete (st end)

 (signal-event ‘(all-safed) st end)))

The pattern clause introduces a recognizer form. The on-
complete clause introduces forms to execute when the recog-
nizer completes. In this example, a synthesized safing-
complete event is signaled. This is, in turn, the second step
of the in-order recognition pattern of communication loss,
safing completion communication required, and restart com-
plete.
This pattern is part of a set of patterns used to recognize loss
and recovery of communication in this application. On a 700
Mhz. Windows 2000 machine with 256 Mb of memory run-
ning Allegro Common Lisp 6.1, CERA processes an event
in approximately 1.5 ms. (2346 base events, representing
two days of data, in 3.55 seconds).

OTHER WORK
Multimodal human computer interfaces tend to be based on
research in vision; task execution, planning and dialogue
systems; natural language parsing; or combinations of these.
For example, the recognition subsystems for the Intelligent
Classroom [6] are inspired by the vision architecture of the
Gargoyle vision system [3] and Horswill’s context-
dependent visual routines [7]. Recognition subsystems for
the Intelligent Classroom are built using pipelines of percep-
tual routines that can be configured at run-time. Such proc-
essing pipelines are similar in spirit to CERA event pattern
recognizers although much more specialized to visual proc-
essing. In fact, the two approaches to recognizing complex
events are complimentary: CERA could benefit from a gen-

7 This has been slightly edited to fit the space constraints of this article.

eral low-level event detection system like Gargoyle and the
Intelligent Classroom could benefit from the abstract lan-
guage for event pattern recognition that CERA provides.

TRIPS, a dialogue management system that integrates a
spoken language interface and other modalities, has recently
undergone an architectural reworking of its core functionali-
ties [1]. Among the changes is the addition of a “behavioral
agent” that monitors for internal and external asynchronous
events. This change is motivated by the incremental nature
of dialogue; a strict “turn-taking” model does not model
human-human dialogue well, and makes human-computer
interactions “unnatural and stilted.” These behavioral agents
are quite similar in motivation and functionality to the event
recognizer architecture described here.

This idea of a separate module for monitoring input from
multiple modalities is common. For example, the Open
Agent Architecture [11, 12] has a “modality coordination
agent” that is responsible for producing “a single meaning
that matches the user’s intention” from multiple inputs. In
general, understanding a person’s intentions involves much
more than recognizing patterns of behavior. However, the
event recognizers we propose define an approach to recogniz-
ing patterns across multiple modes on input that can then be
used as the foundation for understanding intentions.

The idea of using parsing techniques for multimodal event
pattern recognition is not unique to this paper. For example,
Johnston argues both for unification-based multidimensional
chart parsing [8] as well as finite-state parsing techniques [9].
Indeed, these two approaches are at two ends of a scale. On
the one hand, unification-based parsing provides a very gen-
eral declarative framework for multimodal parsing with rela-
tively expensive computational properties. On the other
hand, compiling multimodal grammars to finite state ma-
chines are very efficient, with a concomitant loss in general-
ity and transparency. The approach to event parsing defines
an intermediate strategy in which recognizers can be made
reasonably efficient while maintaining both a clear semantics
and meaningful internal state to aid in software system de-
velopment and monitoring.

EVENT RECOGNI TI ON AND SEMANTI C PARSING
Our own work is situated in research on semantic parsing
techniques and task execution systems. DMAP [10], for
example, is a system that parses natural language directly
into semantic descriptions of a frame-based memory model.
DMAP-style patterns strongly influence the in-order and
binding recognizers described above. In fact, one can build
semantic parsers in the DMAP style by combining in-order
recognizer and binding recognizers.

In DMAP, concepts in memory are arranged in a hierarchy,
and can have a set of (inheritable) “slots,” or attribute/value
pairs, in which the values are typically conceptual representa-
tions (“concepts”) themselves (and thus form a partonomy).
DMAP patterns are attached to the concepts in the memory
model. Each pattern consists of a sequence of items: each
item can either be a grounded literal or an attribute/constraint
pair. Patterns create predictions that the items in the pattern
will be seen in order; when the sequence is completed, the
associated concept is referenced. Grounded literals are

matched directly with user inputs. An attribute/constraint
pair in a pattern for a concept creates a dynamic prediction
for something which fulfills the constraint; if another con-
cept is referenced which fulfills the constraint, it is used as
the value of an attribute/value pair and passed as bindings to
the base concept when it is eventually referenced8.

Consider a frame LOVE with two attributes ACTOR and Q-
OBJECT, with ACTOR constrained to be an M-PERSON
and Q-OBJECT constrained to be in the set {PHYS.OBJ,
ABSTR.OBJ}. Further, let frame:pattern be shorthand for
“If pattern completes, signal frame with associated bind-
ings.” Let {attribute} be shorthand for [binding attribute
l(x).true if x meets the constraints of attribute; false other-
wise]. Let PAT and CHRIS be defined as instances of
PERSON, a subset of PHYS.OBJ, and JUSTICE be an
ABSTR.OBJ. Further, consider these frame patterns:
PAT: [one “Pat”]
CHRIS: [one “Chris”]
JUSTICE: [one “justice”]
LOVE: [in-order {ACTOR} “loves” {Q-OBJECT}]
Then parsing “Pat loves Chris” results in the concept de-
scription:
LOVES with {ACTOR=PAT, Q-OBJECT=CHRIS}
And parsing “Pat loves justice” results in the concept de-
scription:
LOVES with {ACTOR=PAT, Q-OBJECT=JUSTICE}.
The work described in this paper is motivated our desire to
extend the semantic parsing model in order to “parse the
world.” But parsing the world requires extending the parsing
model to allow a much wider set of event pattern types, in-
cluding parsing event patterns that come from multiple event
streams, and the recognizer classes described above are an
attempt to do this.

CONCLUSI ON
Our complex event parsing model makes relatively few
commitments as to the structure of multimodal data, requir-
ing only that the data be discrete (or discretized) typed time-
stamped data which are signaled in order of their endpoints.
Event pattern recognizers can be of arbitrary form (in fact,
both unification and finite-state parsers can created using this
model). We have identified, however, several classes of event
pattern recognizers we have found to be especially useful in
our own work. This model has allowed us to create an effi-
cient event pattern recognition system for a large multi-
channel project. The Complex Event Recognition Architec-
ture provides a system for parsing multimodal input, inte-
grating and parsing data from multiple channels. Future
work will involve building this architecture into other mul-
timodal human-computer interface systems and integrating it
more fully into the Dynamic Predictive Memory Architec-
ture [5], a software architecture for intelligent task and dialog
control.

8 Code for a basic frame system and a DMAP-style parser (in the Com-

mon Lisp programming language) can be found at
http://kzoo.edu/~wfitzg/icp.html.

Relationship Semantics

contains(i1,i2) s1 < s2< f2 < f1

finishedBy(i1,i2) s1 < s2; f1=f2

startedBy(i1,i2) s1 = s2; f1<f2

before(i1,i2) f1<s2

meets(i1,i2) f1=s2

overlaps(i1,i2) s1<s2<f1<f2

equals(i1,i2) s1=s2;<f1=f2

overlappedBy(i1,i2) s2<s1<f2<f1

metBy(i1,i2) s1=f2

after(i1,i2) s1>f2

starts(i1,i2) s1= s2; f1<f2

finishes(i1,i2) s1> s2; f1=f2

during(i1,i2) s2 < s1< f1 < f2

Table 4: Allen’s 13 Possible Relationships between two
intervals i1 and i2, with start times s1 and s2 and finish

times f1 and f2, respectively.

ACKNOWLEDGMENTS
CERA is being developed under NASA contract #NAS9-
00122.

APPENDI X: I NTERVAL RELATI ONSHI PS
Allen [1] defined a covering set of the relationships that can
obtain between two intervals. These relationships are listed
in Table 4.Less strictly, two intervals can be ordered just by
their start times or just by their finish times, using the stan-
dard relationship {< ≤ = ≥ >}. For example, it may just be
of interest that the start time of one interval is equal to the
start time of the second interval, without regard to the order-
ing of their finish times.

REFERENCES
1. Allen, J., Maintaining knowledge about temporal intervals.

Communications of the ACM, 1983. 26(11): 832-843.

2. Eclipse.org, Eclipse Integrated Development Environment.
2002, http://www.eclipse.org .

3. Firby, R.J., et al. An architecture for vision and action. Pro-
ceedings of International Joint Conference on Artificial In-
telligence. 1995.

4. Fitzgerald, W., Building Embedded Conceptual Parsers. Un-
published Ph.D. Thesis, Northwestern University, 1994.

5. Fitzgerald, W. and Firby, R.J. The Dynamic Predictive Mem-
ory Architecture: Integrating language with task execution.
Proceedings of IEEE Symposia on Intelligence and Systems.
1998. Washington, DC.

6. Flachsbart, J., Franklin, D., and Hammond, K. Improving
human computer interaction in a classroom environment us-
ing computer vision. Proceedings of Intelligent User Inter-
faces. 2000. New Orleans, LA: ACM.

7. Horswill, I., Specialization of Perceptual Processes. Unpub-
lished Ph.D. Thesis, Massachusetts Institute of Technology,
1993.

8. Johnson, M. Unification-based multimodal parsing. Pro-
ceedings of COLING-ACL 98. 1998. Montreal, Quebec: ACL
Publications.

9. Johnson, M. and Bagalore, S. Finite-state multimodal under-
standing and parsing. Proceedings of COLING-2000. 2002.
Saarbrücken, Germany: ACL Publications.

10. Martin, C.E., Case-based parsing and Micro-DMAP, in Inside
Case-Based Reasoning, C.K. Riesbeck and R.C. Schank, Edi-
tors. 1989, Lawrence Erlbaum Associates: Hillsdale, NJ.

11. Martin, D.L., Cheyer, A.J., and Moran, D.B., The Open Agent
Architecture: A framework for building distributed software
systems. Applied Artificial Intelligence, 1999. 13: 91-128.

12. Moran, D.B., et al. Multimodal user interfaces in the Open
Agent Architecture. Proceedings of Intelligent User Inter-
faces. 1997. Orlando, FL: ACM.

13. Oviatt, S., Ten myths of multimodal interaction. Communi-
cations of the ACM, 1999. 42(11): 74-81.

14. Schreckenghost, D.C., et al., Intelligent control of life sup-
port for space missions. IEEE Intelligent Systems, 2002.
17(5): 24-31.

